Compare Variable Structures Across SL4 and HAR Objects
Source:R/data_summary.R
compare_var_structure.Rd
Compares variable structures across multiple SL4 and HAR datasets to ensure compatibility. Identifies matching and mismatched variable structures, helping users diagnose inconsistencies.
Value
A list containing:
match
: A data frame listing variables with identical structures across datasets.diff
: A data frame listing variables with mismatched structures, useful for debugging and alignment.If
keep_unique = TRUE
, instead ofmatch
anddiff
, returns a data frame with distinct variable structures across datasets.
Details
Verifies whether variables have consistent structures across multiple datasets.
Ensures correct ordering of dimensions and checks for structural compatibility.
If
keep_unique = TRUE
, returns a list of unique variable structures instead of performing a direct comparison.Useful for merging or aligning datasets before further processing.
Helps detect differences in variable dimensions, which may arise due to model updates or dataset variations.
Examples
# Import sample data:
har_data1 <- load_harx(system.file("extdata", "TAR10-WEL.har", package = "HARplus"))
har_data2 <- load_harx(system.file("extdata", "SUBT10-WEL.har", package = "HARplus"))
# Compare structure for a single variable across multiple datasets
compare_var_structure("A", har_data1, har_data2)
#> $match
#> Variable Dimensions DataShape input1_ColSize input2_ColSize
#> 1 A REG*COLUMN 10x7 7 7
#>
# Compare structure for multiple variables across multiple datasets
comparison_multiple <- compare_var_structure(c("A", "E1"), har_data1, har_data2)
# Extract unique variable structures across multiple datasets
unique_vars <- compare_var_structure("ALL", har_data1, har_data2, keep_unique = TRUE)