Skip to contents

Retrieves structured data from SL4 or HAR objects based on specified dimension patterns. Supports multiple experiments and merging datasets while maintaining structured dimension metadata.

Usage

get_data_by_dims(
  patterns = NULL,
  ...,
  experiment_names = NULL,
  subtotal_level = FALSE,
  rename_cols = NULL,
  merge_data = FALSE,
  pattern_mix = FALSE
)

Arguments

patterns

Character vector. Dimension patterns to extract. Use "ALL" or NULL to extract all available patterns.

...

One or more SL4 or HAR data objects loaded using load_sl4x() or load_harx().

experiment_names

Character vector. Names assigned to each dataset. If NULL, names are inferred.

subtotal_level

Character or logical. Determines which decomposition levels to retain:

  • "total": Keeps only "TOTAL" values.

  • "decomposed": Keeps only decomposed values (excludes "TOTAL").

  • "all": Keeps all rows.

  • TRUE: Equivalent to "all", retaining both "TOTAL" and decomposed values.

  • FALSE: Equivalent to "total", keeping only "TOTAL" values.

rename_cols

Named vector. Column name replacements (c("old_name" = "new_name")).

merge_data

Logical. If TRUE, attempts to merge data across multiple experiments. Default is FALSE.

pattern_mix

Logical. If TRUE, allows flexible pattern matching, ignoring dimension order. Default is FALSE.

Value

A structured list of extracted data:

  • If merge_data = FALSE, returns a named list where each element corresponds to an experiment.

  • If merge_data = TRUE, returns a named list of all merged data

Details

  • Extracts variables matching specified dimension patterns.

  • Allows for flexible pattern matching (pattern_mix = TRUE).

  • Supports merging data across multiple experiments (merge_data = TRUE).

  • Provides column renaming functionality (rename_cols).

  • Handles subtotal filtering (subtotal_level), controlling whether "TOTAL" or decomposed values are retained.

Author

Pattawee Puangchit

Examples

# Import sample data:
sl4_data <- load_sl4x(
  system.file("extdata", "TAR10.sl4", package = "HARplus")
)
sl4_data1 <- load_sl4x(
  system.file("extdata", "SUBT10.sl4", package = "HARplus")
)

# Extract data for a single dimension pattern
data_single_pattern <- get_data_by_dims(
  "comm*reg",
  sl4_data
)

# Extract multiple dimension patterns
data_multiple_patterns <- get_data_by_dims(
  c("comm*reg", "REG*ACTS"),
  sl4_data
)

# Extract all dimension patterns separately from multiple datasets
data_all_patterns <- get_data_by_dims(
  NULL,
  sl4_data, sl4_data1,
  merge_data = FALSE
)

# Merge data for identical patterns across multiple datasets
data_merged_patterns <- get_data_by_dims(
  NULL,
  sl4_data, sl4_data1,
  merge_data = TRUE
)

# Merge data while allowing interchangeable dimensions (e.g., A*B = B*A)
data_pattern_mixed <- get_data_by_dims(
  NULL,
  sl4_data, sl4_data1,
  merge_data = TRUE,
  pattern_mix = TRUE
)

# Retain only "TOTAL" values
data_total_only <- get_data_by_dims(
  "comm*reg",
  sl4_data,
  subtotal_level = "total"
)
data_total_only_alt <- get_data_by_dims(
  "comm*reg",
  sl4_data,
  subtotal_level = FALSE
)

# Retain only decomposed components
data_decomposed_only <- get_data_by_dims(
  "comm*reg",
  sl4_data,
  subtotal_level = "decomposed"
)

# Retain all value levels
data_all_decomp <- get_data_by_dims(
  "comm*reg",
  sl4_data,
  subtotal_level = "all"
)
data_all_decomp_alt <- get_data_by_dims(
  "comm*reg",
  sl4_data,
  subtotal_level = TRUE
)

# Rename specific columns
data_renamed <- get_data_by_dims(
  "comm*reg",
  sl4_data,
  rename_cols = c(REG = "Region", COMM = "Commodity")
)

# Merge data with custom experiment names
data_merged_experiments <- get_data_by_dims(
  "comm*reg",
  sl4_data, sl4_data1,
  experiment_names = c("EXP1", "EXP2"),
  merge_data = TRUE
)